A xylem sap retrieval pathway in rice leaf blades: evidence of a role for endocytosis?
نویسندگان
چکیده
The structure and transport properties of pit membranes at the interface between the metaxylem and xylem parenchyma cells and the possible role of these pit membranes in solute transfer to the phloem were investigated. Electron microscopy revealed a fibrillar, almost tubular matrix within the pit membrane structure between the xylem vessels and xylem parenchyma of leaf blade bundles in rice (Oryza sativa). These pits are involved primarily with regulating water flux to the surrounding xylem parenchyma cells. Vascular parenchyma cells contain large mitochondrial populations, numerous dictyosomes, endomembrane complexes, and vesicles in close proximity to the pit membrane. Taken collectively, this suggests that endocytosis may occur at this interface. A weak solution of 5,6-carboxyfluorescein diacetate (5,6-CFDA) was applied to cut ends of leaves and, after a minimum of 30 min, the distribution of the fluorescent cleavage product, 5,6-carboxyfluorescein (5,6-CF), was observed using confocal microscopy. Cleavage of 5,6-CFDA occurred within the xylem parenchyma cells, and the non-polar 5,6-CF was then symplasmically transported to other parenchyma elements and ultimately, via numerous pore plasmodesmata, to adjacent thick-walled sieve tubes. Application of Lucifer Yellow, and, separately, Texas Red-labelled dextran (10 kDa) to the transpiration stream, confirmed that these membrane-impermeant probes could only have been offloaded from the xylem via the xylem vessel-xylem parenchyma pit membranes, suggesting endocytotic transmembrane transfer of these membrane-impermeant fluorophores. Accumulation within the thick-walled sieve tubes, but not in thin-walled sieve tubes, confirms the presence of a symplasmic phloem loading pathway, via pore plasmodesmata between xylem parenchyma and thick-walled sieve tubes, but not thin-walled sieve tubes.
منابع مشابه
Nitrogen recycling from the xylem in rice leaves: dependence upon metabolism and associated changes in xylem hydraulics
Measurements of amino acids in the guttation fluid and in the xylem exudates of cut leaves from intact plants provide evidence of the remarkable efficiency with which these nitrogenous compounds are reabsorbed from the xylem sap. This could be achieved by mechanisms involving intercellular transport and/or metabolism. Developmental changes in transcripts and protein showed that transcripts for ...
متن کاملEnergy Flow from Root to Shoot: A Comprehensive In silico Analysis
Background: Root to shoot connection and transfer of information seems to be taken place mostly via the transmissions of signal molecules, secondary metabolites, amino acids, hormones and proteins, through xylem sap. Examination of earlier reports is indicative of relatively high levels of conservation in xylem sap protein compositions. Apparently these protein molecules are be...
متن کاملXylem sap analysis reveals new facts of salt tolerance in rice genotypes
Salinity damage in rice and other salt-sensitive species is due to excessive transport of NaCl through the root system to the leaves and consequently low salt transport to the shoot can be a major trait determining salt resistance. Since the rapid uptake of sodium ions is such a crucial part of the response of rice to salinity, physiological experiments were carried out to compare bypass flow i...
متن کاملModification of leaf apoplastic pH in relation to stomatal sensitivity to root-sourced abscisic acid signals.
The confocal microscope was used to determine the pH of the leaf apoplast and the pH of microvolumes of xylem sap. We quantified variation in leaf apoplast and sap pH in relation to changes in edaphic and atmospheric conditions that impacted on stomatal sensitivity to a root-sourced abscisic acid signal. Several plant species showed significant changes in the pH of both xylem sap and the apopla...
متن کاملA Two-Staged Model of Na+ Exclusion in Rice Explained by 3D Modeling of HKT Transporters and Alternative Splicing
The HKT family of Na(+) and Na(+)/K(+) transporters is implicated in plant salinity tolerance. Amongst these transporters, the cereal HKT1;4 and HKT1;5 are responsible for Na(+) exclusion from photosynthetic tissues, a key mechanism for plant salinity tolerance. It has been suggested that Na(+) is retrieved from the xylem transpiration stream either in the root or the leaf sheath, protecting th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Experimental Botany
دوره 59 شماره
صفحات -
تاریخ انتشار 2008